logo
telefony

Powiedz znajomemu o analizie matematycznej!




Nazwa działuCenaOkres działania
Granica ciągu
  • Największa potęga
  • Sprzężenie
  • Trzy ciągi
  • Liczba e
50 zł6 miesięcy
Kup więcej

 

Objerzyj przykładową lekcję z działu
Granica ciągu

przykładowa lekcja

  

  

Największa potęga

 

Informacje dodatkowe do lekcji

(Poniższe informacje w znacznym stopniu mogą się przyczynić do zrozumienia omawianych tematów oraz wpłynąć na poszerzenie wiedzy zdobytej w lekcjach on-line).

 

Granica ciągu: Największa potęga.

 

Następny typ zadań analizy matematycznej - granicy ciągu. Jeżeli mamy policzyć granicę ciągu, gdzie po podstawieniu mamy symbol nieoznaczony nieskończoność minus nieskończoność to musimy zastosować sprzężenie. Pamiętamy, że granicę ciągu zawsze liczymy w nieskończoności.

 

Przy wyliczaniu granicy ciągu z największej potęgi napotkać możemy następujące przypadki granic:

 

1. Jeżeli mamy policzyć granicę ciągu w postaci ułamka, to należy wyłączyć przed nawias największy element z mianownika lub przez niego podzielić. Wtedy zauważymy że poszczególne elementy naszej granicy ciągu upraszczają się nam do jedynki lub do zera. Wyłączone elementy (czyli to co zostało) stanowi o wyniku granicy ciągu. Widzimy, że liczenie granic z największej potęgi polega na wyłączaniu największych elementów przed nawias (oddzielnie z licznika i mianownika) lub dzieleniu przez największy element z mianownika. Np. mamy do policzenia granicę ciągu, gdzie w liczniku mamy n2 + 1 a w mianowniku 2n2 + n + 1. Wyłączamy największy element przed nawias czyli n2. Jeżeli n dąży do nieskończoności, a w granicach n ZAWSZE dąży do nieskończoności to wszystkie elementy 1/n i 1/n2 dążą do zera, a co za tym idzie, nawias w liczniku dąży do jedynki, a w mianowniku do dwójki, n2 upraszczają się. W ten oto prosty sposób widzimy, że granica ciągu wynosi ½. Jeszcze raz: o wyniku ciągu stanowią TYLKO NAJWIĘKSZE ELEMENTY Z LICZNIKA I MNIANOWNIKA.

 

2. Jeżeli mamy policzyć granicę ciągu w postaci ułamka, gdzie w liczniku lub mianowniku mam mnożenie kliku elementów, to znowu musimy znaleźć największą potęgę (element) i wyłączyć ją przed nawias. Pamiętamy, że wyłączamy największe potęgi z każdego elementu osobno i że każdy największy element będzie znacząco wpływał na wynik naszej granicy ciągu. Podobnie musimy zrobić z mianownikiem. Po rozpisaniu tego w taki sposób widać, co do czego dąży i ile wynosi nasza granica ciągu. Np. jeżeli w liczniku mamy (2n + 1)(n2 + 5). Widać od razu, że jest to mnożenie dwóch nawiasów, więc z pierwszego nawiasu największa potęga to 2n, a z drugiego to n2 . W sumie największy element w liczniku to 2n3. Dokładne rozpisanie opisuje lekcja dostępna w kursie.

 

 3. Może się też zdarzyć, że w swoich zmaganiach z granicami natkniemy się na silnię. Tutaj pomocne okażą się tablice matematyczne, dzięki którym bez problemu znajdziemy rozwiązanie naszej granicy ciągu. Wystarczy wiedzieć, że: (n+1)! = n!(n+1). Teraz największym elementem jest n! i to ten element musimy wyłączyć przed nawias. Po jego uproszczeniu, możemy przystąpić do wyłączania największych potęg z licznika i mianownika.

granica ciągu - największa potęga

Opracowując ten kurs mieliśmy na uwadze specyfikę zadań egzaminacyjnych. Kurs jasno pokazuje, jak zidentyfikować zadanie i skojarzyć z nim odpowiednią metodę obliczeń.

Zapraszamy do obejrzenia lekcji analizy matematycznej on-line: Największa potęga

  • Każdy dział zawiera jedną darmową lekcję.